Category Archives : Data Science

25

Nov

Multi-language identification and transcription in Video Indexer

Multi-language speech transcription was recently introduced into Microsoft Video Indexer at the International Broadcasters Conference (IBC). It is available as a preview capability and customers can already start experiencing it in our portal. More details on all our IBC2019 enhancements can be found here.

Multi-language videos are common media assets in the globalization context, global political summits, economic forums, and sport press conferences are examples of venues where speakers use their native language to convey their own statements. Those videos pose a unique challenge for companies that need to provide automatic transcription for video archives of large volumes. Automatic transcription technologies expect users to explicitly determine the video language in advance to convert speech to text. This manual step becomes a scalability obstacle when transcribing multi-language content as one would have to manually tag audio segments with the appropriate language.

Microsoft Video Indexer provides a unique capability of automatic spoken language identification for multi-language content. This solution allows users to easily transcribe multi-language content without going through tedious manual preparation steps before triggering it. By that, it can save anyone with large archive of videos both time and money, and enable discoverability and accessibility scenarios.

Multi-language audio transcription in Video

Share

18

Nov

https://azure.microsoft.com/blog/pytorch-on-azure-with-streamlined-ml-lifecycle/It’s exciting to see the Pytorch Community continue to grow and regularly release updated versions of PyTorch! Recent releases improve performance, ONNX export, TorchScript, C++ frontend, JIT, and distributed training. Several new experimental features, such as quantization, have also been introduced. At READ MORE

Share

30

Sep

Built-in Jupyter notebooks in Azure Cosmos DB are now available

Earlier this year, we announced a preview of built-in Jupyter notebooks for Azure Cosmos DB. These notebooks, running inside Azure Cosmos DB, are now available.

Cosmic notebooks are available for all data models and APIs including Cassandra, MongoDB, SQL (Core), Gremlin, and Spark to enhance the developer experience in Azure Cosmos DB. These notebooks are directly integrated into the Azure Portal and your Cosmos accounts, making them convenient and easy to use. Developers, data scientists, engineers and analysts can use the familiar Jupyter notebooks experience to:

Interactively run queries Explore and analyze data Visualize data Build, train, and run machine learning and AI models

In this blog post, we’ll explore how notebooks make it easy for you to work with and visualize your Azure Cosmos DB data.

Easily query your data

With notebooks, we’ve included built-in commands to make it easy to query your data for ad-hoc or exploratory analysis. From the Portal, you can use the %%sql magic command to run a SQL query against any container in your account, no configuration needed. The results are returned immediately in the notebook.

Improved developer productivity

We’ve also bundled in version 4 of our Azure Cosmos DB Python SDK

Share

19

Aug

https://azure.microsoft.com/blog/announcing-the-general-availability-of-python-support-in-azure-functions/Python support for Azure Functions is now generally available and ready to host your production workloads across data science and machine learning, automated resource management, and more. You can now develop Python 3.6 apps to run on the cross-platform, open-source READ MORE

Share

11

Jul

Announcing preview of Azure Data Share
Announcing preview of Azure Data Share

In a world where data volume, variety, and type are exponentially growing, organizations need to collaborate with data of any size and shape. In many cases data is at its most powerful when it can be shared and combined with data that resides outside organizational boundaries with business partners and third parties. For customers, sharing this data in a simple and governed way is challenging. Common data sharing approaches using file transfer protocol (FTP) or web APIs tend to be bespoke development and require infrastructure to manage. These tools do not provide the security or governance required to meet enterprise standards, and they often are not suitable for sharing large datasets. To enable enterprise collaboration, we are excited to unveil Azure Data Share Preview, a new data service for sharing data across organizations.

Simple and safe data sharing

Data professionals in the enterprise can now use Azure Data Share to easily and safely share big data with external organizations in Azure Blob Storage and Azure Data Lake Storage. New services will continue to come online. As a fully managed Azure service, Azure Data Share does not require infrastructure to set up and it scales to meet big data sharing demands.

Share

03

Jul

Automate MLOps workflows with Azure Machine Learning service CLI

This blog was co-authored by Jordan Edwards, Senior Program Manager, Azure Machine Learning

This year at Microsoft Build 2019, we announced a slew of new releases as part of Azure Machine Learning service which focused on MLOps. These capabilities help you automate and manage the end-to-end machine learning lifecycle.

Historically, Azure Machine Learning service’s management plane has been via its Python SDK. To make our service more accessible to IT and app development customers unfamiliar with Python, we have delivered an extension to the Azure CLI focused on interacting with Azure Machine Learning.

While it’s not a replacement for the Azure Machine Learning service Python SDK, it is a complimentary tool that is optimized to handle highly parameterized tasks which suit themselves well to automation. With this new CLI, you can easily perform a variety of automated tasks against the machine learning workspace, including:

Datastore management Compute target management Experiment submission and job management Model registration and deployment

Combining these commands enables you to train, register their model, package it, and deploy your model as an API. To help you quickly get started with MLOps, we have also released a predefined template in Azure Pipelines. This template allows you

Share

24

Jun

Azure Cosmos DB: A competitive advantage for healthcare ISVs

This blog was co-authored by Shweta Mishra, Senior Solutions Architect, CitiusTech and Vinil Menon, Chief Technology Officer, CitiusTech

CitiusTech is a specialist provider of healthcare technology services which helps its customers to accelerate innovation in healthcare. CitiusTech used Azure Cosmos DB to simplify the real-time collection and movement of healthcare data from variety of sources in a secured manner. With the proliferation of patient information from established and current sources, accompanied with scrupulous regulations, healthcare systems today are gradually shifting towards near real-time data integration. To realize such performance, healthcare systems not only need to have low latency and high availability, but should also be highly responsive. Furthermore, they need to scale effectively to manage the inflow of high speed, large volumes of healthcare data.

The situation

The rise of Internet of Things (IoT) has enabled ordinary medical devices, wearables, traditional hospital deployed medical equipment to collect and share data. Within a wide area network (WAN), there are well defined standards and protocols, but with the ever increasing number of devices getting connected to the internet, there is a general lack of standards compliance and consistency of implementation. Moreover, data collation and generation from IoT enabled medical/mobile devices need specialized

Share

10

Jun

https://azure.microsoft.com/blog/three-things-to-know-about-azure-machine-learning-notebook-vm/Data scientists have a dynamic role. They need environments that are fast and flexible while upholding their organization’s security and compliance policies. Data scientists working on machine learning projects need a flexible environment to run experiments, train models, iterate models, READ MORE

Share

04

Jun

A look at Azure’s automated machine learning capabilities

https://azure.microsoft.com/blog/a-look-at-azure-automated-machine-learning-capabilities/

Share

14

May

Operationalizing your PostgreSQL database health checks using SQL Notebooks

https://azure.microsoft.com/blog/operationalizing-your-database-health-checks-using-sql-notebooks/

Share